Logarithm Table

Complete log table with common logarithms (base 10) and natural logarithms (base e) for numbers 1 to 100.

e (Euler's number)
log₁₀ = 0.4343
ln = 1.0000
10
log₁₀ = 1.0000
ln = 2.3026
100
log₁₀ = 2.0000
ln = 4.6052
1000
log₁₀ = 3.0000
ln = 6.9078
nlog₁₀(n)ln(n)
10.00000.0000
20.30100.6931
30.47711.0986
40.60211.3863
50.69901.6094
60.77821.7918
70.84511.9459
80.90312.0794
90.95422.1972
101.00002.3026
111.04142.3979
121.07922.4849
131.11392.5649
141.14612.6391
151.17612.7081
161.20412.7726
171.23042.8332
181.25532.8904
191.27882.9444
201.30102.9957
211.32223.0445
221.34243.0910
231.36173.1355
241.38023.1781
251.39793.2189
261.41503.2581
271.43143.2958
281.44723.3322
291.46243.3673
301.47713.4012
311.49143.4340
321.50513.4657
331.51853.4965
341.53153.5264
351.54413.5553
361.55633.5835
371.56823.6109
381.57983.6376
391.59113.6636
401.60213.6889
411.61283.7136
421.62323.7377
431.63353.7612
441.64353.7842
451.65323.8067
461.66283.8286
471.67213.8501
481.68123.8712
491.69023.8918
501.69903.9120
511.70763.9318
521.71603.9512
531.72433.9703
541.73243.9890
551.74044.0073
561.74824.0254
571.75594.0431
581.76344.0604
591.77094.0775
601.77824.0943
611.78534.1109
621.79244.1271
631.79934.1431
641.80624.1589
651.81294.1744
661.81954.1897
671.82614.2047
681.83254.2195
691.83884.2341
701.84514.2485
711.85134.2627
721.85734.2767
731.86334.2905
741.86924.3041
751.87514.3175
761.88084.3307
771.88654.3438
781.89214.3567
791.89764.3694
801.90314.3820
811.90854.3944
821.91384.4067
831.91914.4188
841.92434.4308
851.92944.4427
861.93454.4543
871.93954.4659
881.94454.4773
891.94944.4886
901.95424.4998
911.95904.5109
921.96384.5218
931.96854.5326
941.97314.5433
951.97774.5539
961.98234.5643
971.98684.5747
981.99124.5850
991.99564.5951
1002.00004.6052

What is a Logarithm?

A logarithm is the inverse operation of exponentiation. If bx = y, then logb(y) = x. In simpler terms, a logarithm answers the question: "To what power must we raise a base to get a certain number?"

Common Logarithm (log₁₀)

The common logarithm uses base 10 and is written as log(x) or log₁₀(x). For example, log₁₀(100) = 2 because 10² = 100.

Natural Logarithm (ln)

The natural logarithm uses base e (approximately 2.71828) and is written as ln(x). It's commonly used in calculus, physics, and engineering.