Logarithm Table
Complete log table with common logarithms (base 10) and natural logarithms (base e) for numbers 1 to 100.
e (Euler's number)
log₁₀ = 0.4343
ln = 1.0000
10
log₁₀ = 1.0000
ln = 2.3026
100
log₁₀ = 2.0000
ln = 4.6052
1000
log₁₀ = 3.0000
ln = 6.9078
| n | log₁₀(n) | ln(n) |
|---|---|---|
| 1 | 0.0000 | 0.0000 |
| 2 | 0.3010 | 0.6931 |
| 3 | 0.4771 | 1.0986 |
| 4 | 0.6021 | 1.3863 |
| 5 | 0.6990 | 1.6094 |
| 6 | 0.7782 | 1.7918 |
| 7 | 0.8451 | 1.9459 |
| 8 | 0.9031 | 2.0794 |
| 9 | 0.9542 | 2.1972 |
| 10 | 1.0000 | 2.3026 |
| 11 | 1.0414 | 2.3979 |
| 12 | 1.0792 | 2.4849 |
| 13 | 1.1139 | 2.5649 |
| 14 | 1.1461 | 2.6391 |
| 15 | 1.1761 | 2.7081 |
| 16 | 1.2041 | 2.7726 |
| 17 | 1.2304 | 2.8332 |
| 18 | 1.2553 | 2.8904 |
| 19 | 1.2788 | 2.9444 |
| 20 | 1.3010 | 2.9957 |
| 21 | 1.3222 | 3.0445 |
| 22 | 1.3424 | 3.0910 |
| 23 | 1.3617 | 3.1355 |
| 24 | 1.3802 | 3.1781 |
| 25 | 1.3979 | 3.2189 |
| 26 | 1.4150 | 3.2581 |
| 27 | 1.4314 | 3.2958 |
| 28 | 1.4472 | 3.3322 |
| 29 | 1.4624 | 3.3673 |
| 30 | 1.4771 | 3.4012 |
| 31 | 1.4914 | 3.4340 |
| 32 | 1.5051 | 3.4657 |
| 33 | 1.5185 | 3.4965 |
| 34 | 1.5315 | 3.5264 |
| 35 | 1.5441 | 3.5553 |
| 36 | 1.5563 | 3.5835 |
| 37 | 1.5682 | 3.6109 |
| 38 | 1.5798 | 3.6376 |
| 39 | 1.5911 | 3.6636 |
| 40 | 1.6021 | 3.6889 |
| 41 | 1.6128 | 3.7136 |
| 42 | 1.6232 | 3.7377 |
| 43 | 1.6335 | 3.7612 |
| 44 | 1.6435 | 3.7842 |
| 45 | 1.6532 | 3.8067 |
| 46 | 1.6628 | 3.8286 |
| 47 | 1.6721 | 3.8501 |
| 48 | 1.6812 | 3.8712 |
| 49 | 1.6902 | 3.8918 |
| 50 | 1.6990 | 3.9120 |
| 51 | 1.7076 | 3.9318 |
| 52 | 1.7160 | 3.9512 |
| 53 | 1.7243 | 3.9703 |
| 54 | 1.7324 | 3.9890 |
| 55 | 1.7404 | 4.0073 |
| 56 | 1.7482 | 4.0254 |
| 57 | 1.7559 | 4.0431 |
| 58 | 1.7634 | 4.0604 |
| 59 | 1.7709 | 4.0775 |
| 60 | 1.7782 | 4.0943 |
| 61 | 1.7853 | 4.1109 |
| 62 | 1.7924 | 4.1271 |
| 63 | 1.7993 | 4.1431 |
| 64 | 1.8062 | 4.1589 |
| 65 | 1.8129 | 4.1744 |
| 66 | 1.8195 | 4.1897 |
| 67 | 1.8261 | 4.2047 |
| 68 | 1.8325 | 4.2195 |
| 69 | 1.8388 | 4.2341 |
| 70 | 1.8451 | 4.2485 |
| 71 | 1.8513 | 4.2627 |
| 72 | 1.8573 | 4.2767 |
| 73 | 1.8633 | 4.2905 |
| 74 | 1.8692 | 4.3041 |
| 75 | 1.8751 | 4.3175 |
| 76 | 1.8808 | 4.3307 |
| 77 | 1.8865 | 4.3438 |
| 78 | 1.8921 | 4.3567 |
| 79 | 1.8976 | 4.3694 |
| 80 | 1.9031 | 4.3820 |
| 81 | 1.9085 | 4.3944 |
| 82 | 1.9138 | 4.4067 |
| 83 | 1.9191 | 4.4188 |
| 84 | 1.9243 | 4.4308 |
| 85 | 1.9294 | 4.4427 |
| 86 | 1.9345 | 4.4543 |
| 87 | 1.9395 | 4.4659 |
| 88 | 1.9445 | 4.4773 |
| 89 | 1.9494 | 4.4886 |
| 90 | 1.9542 | 4.4998 |
| 91 | 1.9590 | 4.5109 |
| 92 | 1.9638 | 4.5218 |
| 93 | 1.9685 | 4.5326 |
| 94 | 1.9731 | 4.5433 |
| 95 | 1.9777 | 4.5539 |
| 96 | 1.9823 | 4.5643 |
| 97 | 1.9868 | 4.5747 |
| 98 | 1.9912 | 4.5850 |
| 99 | 1.9956 | 4.5951 |
| 100 | 2.0000 | 4.6052 |
What is a Logarithm?
A logarithm is the inverse operation of exponentiation. If bx = y, then logb(y) = x. In simpler terms, a logarithm answers the question: "To what power must we raise a base to get a certain number?"
Common Logarithm (log₁₀)
The common logarithm uses base 10 and is written as log(x) or log₁₀(x). For example, log₁₀(100) = 2 because 10² = 100.
Natural Logarithm (ln)
The natural logarithm uses base e (approximately 2.71828) and is written as ln(x). It's commonly used in calculus, physics, and engineering.